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ABSTRACT:  This paper deals with the nudripoint Cauer matrix continued-fraction expansion
(MCFE) for model reduction of linear mulii-input multi-output (MIMO) systems with various
numbers of inputs and owtputs. A salient feature of the proposed MCFE approach to model
reduction of MIMO systems with square transfer matrices is its equivalence (o the matrix
Puadé approximation approach. The Cauer second form of the ordinary MCFE for a square
transfer function matrix is generalized in this paper to a multipoint and nonsquare-matrix
version. An interesting connection of the multipoint Cauer MCFE method to the multipoint
matrix Padé approximation method is estublished. Also, algorithms for obtaining the reduced-
degrec mairix-fraction descriptions and reduced-dimensional state-space models from a
transfer function matrix vie the multipoint Cauer M CFE algorithm are presented. Practical
adrvantages of using the multipoint Caver MCFE are discussed and a numerical example is
provided 1o illustrate the algorithms.

L. Introduction

The accurate mathematical modeling or accurate identification of linear time-
invariant multi-input multi-output (MIMO) systems usually leads to high-degree
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transfer-function matrices or high-dimensional state-space models. The analysis
and design of such high-degree transfer-function matrices in the frequency domain,
or such high-dimensional state-space models in the time domain. is not an easy task
because of computational difficulties and implementation considerations. There is
thus a real incentive to reduce the complexity of linear time-invariant MIMO
models to equivalent simple ones.

Several methods are available in the literature (1-6) for approximating a linear
time-invariant MIMO system by a reduced-order model. Among them, the method
of matrix continued fraction expansion (2-12) has the distinct advantages of
computational simplicity and applicability to obtain both frequency-domain as
well as time-domain reduced-order models. Chen (2) used a matrix Cauer second
form of continued fractions to obtain a reduced-order model by retaining the first
several significant matrix partial quotients and discarding the others. Owing to its
equivalence to the matrix Padé approximation about s = 0, the method of using
the Cauer second form of MCFE provides satisfactory results in the steady-state
response only.

To remove this drawback, Shieh and Gaudiano (9, 10) have proposed an MCFE
involving expansion points at s = 0 and s = oo, which is equivalent to the matrix
Padé approximation about s = 0 and s = . More recently, Chen and Hwang (7)
have presented a multipoint MCFE method to produce better reduced-order
models for linear time-invariant MIMO systems.

Itis worth noting that the mentioned MCFE methods are derived for the MIMO
systems having an equal number of inputs and outputs while being described by
their matrix-fraction description (MFD). For broadening the application scope of
the MCFE method to include the nonsquare MIMO systems, Shieh er af. (11, 13)
have proposed the use of a matrix pseudo-inverse for the Cauer second form of
the MCFE. Their method is only applicable to an MIMO system described by its
MFD and the connection of the MCFE method to the matrix Padé approximation
method has not been explored yet.

The main purpose of this paper is two-fold. Firstly we wish to generalize the
CFE algorithm of multipoint Padé fitting (14) to the matrix version for obtaining
the reduced-degree MFDs and reduced-dimensional state-space models of a non-
square linear MIMO system characterized by its transfer-function matrix or its
MFD. Secondly we want to reveal the connection of the multipoint Cauer MCFE
method to the multipoint matrix Padé approximation method.

The paper is organized as follows. In Section II, computational algorithms
involving a matrix pseudo-inverse are derived for determining the multipoint Cauer
MCFE of a nonsquare linear time-invariant MIMO system from its transfer-
function matrix and MFD, respectively. In Section I, an efficient recursive algo-
rithm is presented for obtaining a set of MFDs with different reduced degrees from
the multipoint Cauer MCFE algorithm. Also, the connection of the multipoint
Cauer MCFE method involving the matrix pscudo-inverse to the multipoint matrix
Padé approximation method is established. In Section IV, a canonical block state-
realization of an MFD based on its multipoint Cauer MCFE representation is
presented for obtaining reduced-dimensional state-space models. An explicit
matrix-relationship between the multipoint Cauer MCFE canonical form and the
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block companion form is also derived. Such a matrix-relationship is useful in
connection with the construction of an aggregation matrix which relates the state
vectors of the system and its reduced-dimensional models.

Throughout this paper, the following notations are used :

A* : left pseudo-inverse of the matrix A, defined as (A"A) 'A':
A~ : right pseudo-inverse of the matrix A, defined as A"(AA") ':
.+ identity matrix of order n;

0,: null matrix of order n:
0,.,: pbygnull matrix

R”*9: set of p x ¢ real matrices.

I1. Multipoint Cauer MCFE of a Nonsquare Transfer-function Matrix

A linear time-invariant g-input p-output systcm may be described by the px ¢
transfer-function matrix

G@s) =[g. (), i=12..... p: j=10L2.....4 (1
or by the matrix-fraction description (MFD) (15):
N N 1
G(s) = [ Y A;;,s’] [Z A..,s'] 2A,NA () Y op2y (2)
i—0 P

where A, e R“*7 and A,,e R"". Let the Taylor serics expansions of G(s) about

the /1 distinet real points ... ... g, be
Gs)= Y T (s—a), i=1L2... n (3a)
j=0
where
T _ ! d G(s R 3b
N _Il dS,' (5)|‘:,,,E . ( )

In the following, we deal with the MCFE for the nonsquare transfer-function
matrix G(s). Before proceeding, let gy, fas - - -+ M be the multiplicities corresponding
to the distinct real points a,,0,, ..., ,,. such that g, + .+ + i, = 2N. These
numbers ¢, will be used as expansion points taking into account multiplicities. Let

(51282002 8) = (0ot 0100y Ganenes s PN a,)
N

e " Ho

denote the ordered point system. Also, let

v, =gt s 4)

2.1. Multipoint Cauer MCFE of an MFD
From the definition of a matrix pseudo-inverse and the MFD (2)., we can write
G(s) as

Gis) = [G* ()] = [[A:(DA, '] = [AiDAT]™ (5)
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Assume that A (s,) exists and let
H, = A (5s)A%(5,)e R?"*, (6)

Then, we can expand A (s)A%(s) as
A1(DAT() = H +(s—5)A3(5)A% (5) (7)

where the matrix polynomial

N-|

As(s) = Z Ass, A, eR (8
j=0
is to be determined. Postmultiplying both sides of (7) by A,(s) and then using the
identity AZ(s)A.(s) = I, vields the relation :
A1(9) = H Ay (9) 4+ (s—5,)A;(5). 9

Substituting the matrix polynomials of A (), Ay(s) and A(s) into (9), and then
equating the coefficients of like powers, we obtain

A}J:A1J+|—H1A2‘,+]+51A3',‘+|, j=N—l,N—2,,O (IO)

where A,y =0, and A, , = 0,.
With the substitution of (7) into (5), G(s) can be further written as

G(s) = [H, +(s—5)A(s)A%(s)]” = [H, +(s—s)[ADA '(9]*]. (1)
Similarly, assume that A5 !(s,) exists. and let
H, = A,(s50)A; '(s,) e RP¢ (12)
then the term in the inner brackets of (11) can be expanded as
A(DAT () = Hy+ (s—52)AL4(5)A, (s) (13)

where the matrix polynomial

N 2
Ais) = Y A8, Ay eRr (14)

j=0
satisfies the relation :
Ax(s) = HyA (5) + (5—55) A, (s). (15)
From this we have
A=Ay —HA,, +5:A4,01, J=N-2N—1,...,0 (16)

where A, = O,., for j = N—1. With the substitution of (13) into (1), G(s) is
now expanded as

G(s) = [Hi + (s—s)[Hy + (s—5,) A4 (9)A, '(917]". (17)

By repeating the expansion procedure of (5)—(17) in the MFD, A,(s)A, '(s), we
can finally expand G(s) into the following multipoint Cauer matrix continued
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fractions:
G(s) = [H +(s—s)[Ha+ (s—s)[Hi+ (s—s)[ .. [Hay

+s—saw DHAT .1 TT] . (8a)
The matrix partial quotients H, can be obtained via the recurrence relations:

{A,(s,)A,-"i (s)., i=1,3,...,2N—1

AGIAL (). P= 2.4 2N (18b)
N oo
A als) = Z A, 2./'S/
0
= . (Ai(A\')_HiAw |(S)) (18c)
AH ¥ Ar‘/" I_HIAI+ 1j+ I+S1Ar«r 24 0
= Neih - ILN—is—2.....0 (18)

where i, denotes the integer part of i/2 and the required matrix inverse and matrix
pseudo-inverse are assumed to exist. For convenience, we can construct an expan-
sion array as shown in Table I for evaluating A, ;. In this array, the first two matrix
rows are taken from the matrix polynomials A, (s) and Ax(s), respectively. The
subsequent matrix rows are evaluated using (18a—).

2.2. Multipoint Cauer MCFE based on Taylor-series expansions

In this subsection. we derive an alternative tabular algorithm for obtaining the
matrix partial quotients H, of the multipoint Cauer MCFE (18) of the matrix
transfer  function G(s) from its Taylor-serics coefficients T,; in (3) for
j=01,...,g—landi=1,....m

To begin with, we define

GU(S) = G,./.1)+G:.,,1(3'*U/)+G,",_2(S—U,)z+

2 i Gl.j.k(swal)k (]9)

k=10

TaBLE 1
Expansion array for evaluating A

< Al.ll AI.\ AI.Z"'AL:V IALN

ll_:l Ay Asy Anr Ay
: Ao A A Ay

H., < ::: nu,w‘\:.v i

How < Asvino
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with
G, (s) = l,,+0q(.8‘—()',)+0q(_\'_g‘_):+ e

te>

Z G,;]_/\-(S—U,)A, i=12,..., m 20)

k=0
and
Go) =T +T (s—6)+T,(s—06)>+
£ % Gauls—a), i=1.2,....m (21)
k=10
Then, from (3a), (20) and (21), we can represent G(s) by one of the following
infinite-term MFDs:
G(s) = G, ()G, '(5)

=[G (s)GHLH)™, i=1.2,....m. (22)
According to the form of the multipoint Cauer MCFE (18) and the expansion
ordered point system (4), we know that matrix partial quotients H..\.H, ., ...,
H, ., are evaluated from the infinite-term MFD G, ,()G/,'(5). Since the multi-
point Cauer MCFE involves m distinct expansion points g;, i = |,2,....m, it is
therefore required to manipulate the m infinite-term MFDs in (22), which represent
the same transfer-function matrix G(s), to obtain the partial quotients H, of the
multipoint Cauer MCFE (18).

Now, starting from (22), we expand the infinite-term MFD G, ()G (s) as
G (GH) = H +(s—5)G,3(9)GA(s). i=1.2.....m (23)
where
H, = G).l(-"l)Gf:(M) for s, =0
= G1,|Ancﬁ2‘u' (24)

In (23), each of the infinite-term series G, ;(s) satisfies
G (s) = H\ G () +(s—5)G,1(5), i=1,2,..., m (25)
which is obtained by postmultiplying both sides of (23) with G, »(s) and using the

identity G5 ()G, ,(s) = I,. Substituting the series representations of G.1(5), G, 1(s)
and G, ;(s) into (25), we have

Z Gi_x./.(s‘(f,)k =H, Z GL:,A(S—U:)k

K=10 ko0

+ [(s - O’i) + (O-[ -8 )] Z Gl. RN (S - 0.’)/\ . (26)
k=0
Equating the coefficients of like terms (s—a,)*, we obtain
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|
Gy =q0,—5,

G o —H Gy, i=1;k=0,12,...

[GV‘IJ\‘_HIGLZJ\’—GL}J« ;], 1.:2.3 ..... m;/\’=0.1,2,...

(27)

where G5, , =0,.
In genceral, the MFDs, G,,(5)G/,. (s) for jodd and G, ;(5)G,,} (s) for jeven, can
respectively be expanded as

G, ()G, (s) = H,+(s—5)G,,, ()G (), i=1L1+1,.... m (28a)
and
G, ()G, () = H+(s=35)G, oG (), i=11+1.....m (28b)
where s, = ¢, and
oo {G,l,(a,)G,'_",, () = GGy 1o for jodd 29)
"7 G606, (0) = GGy for jeven.
In (28). cach infinite-term serics G, . ($) satisties
G, (5 =H,G,,, D)5 —35)G, (), T=LI+1 m (30a)

1.e.

2 G:,[AA('Y"GA)A = H[ Z G[./« 1‘;\(.8'4(7,)A
[

+ [(‘ - 0-1) + (Ul - S/)] Z Gl.l t 2k (S_ O—i),\ . (30b)
k=0

This last equation allows one to evaluate the coefficients G, », fori=/L{1+1,..., m
and K =0,1.2,.... as follows:
1

—s [Gl./Ak;H/GI.M 1k~ GL[+ 2k 1]-
G on = C 31
e i=1+11+2,..., m Gl

GLI‘./\'#IWHIGIJFI.A'1 1s i=1

Following the above derivation, we can construct /m expansion arrays as shown
in Table II for calculating the matrix partial quotients H,,H,, ..., H,, of the
multipoint Cauer MCFE of G(s) from the matrix coefficients of the Taylor series
expansions in (3).

In the expansion array in Table 11, the first two matrix rows are specified by

I, fork=0
- 32
Giix 0, for k=12 .pu—I o
G ..=Ty for k=0,1,...,p4— 1L (32b)
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TaBLE Il
Expansion array for evaluating G\

G o G\, G, G:l.u' 2 G

RN
G 10 G:A:,l G,,:‘z ce G:_Z_u‘ 2 P2, [
G.iq G G G..m, 2 G,.m‘ |
~ y
H ¢ G\ (J..-‘,» N G,,\,. 1.2 (:“’, Ty 2 G, . Ly, 1
vl w <
H ' ¢ G:_r‘ t2.0 Gr..,» 2 GA..H 22 o ('m‘o 2, 2 ('l.v‘b 2,1
Y2
Gm‘ + A0 G,,;‘ v Gu‘ +32 e G:_vj + 3 -2
H G,_v« tu, L0 G:.v‘ b= Gl.v‘ bt 12
v o s
H ¢ 0 [P
Yot H, G

The subsequent matrix rows of the expansion array are obtained by the following
recurrence formulas,

1
o, _‘, [GIA/‘I\' —H/Gi.j+ 1.k _Gl,/+ 2.k I]*
[ k=011 and j=1.2,... v
Gl._/.l( t1 —H/Gr./+ 1A+ L
k=01.....vi+u,—j—1 and j=v,+ 1 v,+2,. .., v+ p— |

(33)

which are derived from the relation in (30). The matrix partial quotients H, for
J=vi+ 1l v+2,. .. v+ associated with the expansion array in Table II are
evaluated as

G:,,.uGit+ o for j odd
H; = (34)

l .
G;;0G,;. ¢ forj even.

It is noted that in the foregoing derivations, we have assumed that the required
matrix inverse and matrix pseudo-inverse exist. If G,porGyfori=12...m
do not exist, we should readjust the expansion points ¢, such that the matrix inverse
exists. When all coefficients of any matrix row in the expansion array are null, the
expansion procedure terminates. In this case, we can use the calculated matrix
partial quotients and the inversion procedure in the next section to derive the MED
for G(s).

{I1. Reduced-degree MFDs Derived from the Multipoint Cauer MCFE

Suppose the transfer-function matrix G(s) of a high-degree g-input p-output
system i§ expanded into a multipoint Cauer MCFE in (18). An M th-degree reduced
MFD, G, (s), for the system can be obtained by truncating the matrix partial
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quotients Hy, , 1, Hypyp 2o .. Hay in (18). Hence G, (s) is given by

GM(S) = [H, +(s—s)[H:+ (s—s)[Hs+(s—s3)[ - Hay
+ (5 — Sy 1)H2#M]\---]#]\]#]\- (35)

To convert the truncated Cauer MCFE into its MFD, we define

[Hl+(S—S|)[Hz+(S—S:)[H_z+(s—s3)[...[Hk |
PQ (=4 T OHET™. WJIPTT)T for k even (36)
H,+G6—s)M.+ (s—s)Hy+(s—sil.. .[Hy

+(s—s, DH1*..]°17171% forkodd

where
P(s) =P o+ Pis+ - + P ps® L P e RPY (37a)
Q.(5) =Quo+Qu s+ +Qk.[k‘:|5(k‘zla Qe R (37b)

and [r] denotes the integer part of r. Then it can be shown that the matrix poly-
nomials P,(s) and Q,(s) satisfy the following recurrence relations :

P(s) =P, (OH +(s—s DP 2(s). k=12 (38a)
Qu(s) = Qv (WH+(s—s DQi 29), k= 1.2,... (38b)

where Py(s) = O, . Pi(s) = O,, Qu(s) =1L, and Q,(s) = H,. Using the relations
in (38)., we can construct an inversion array as shown in Table I1I to compute the
matrix coeflicients P, and Q,, from the matrix partial quotients H,.

In the inversion array, the first two matrix rows are given by

P(m = O/)xq* Pl.l) = lps QU.I) = lq« Q]_n =H, (39)
TanLe 111
Inversion array
Numerator Denominator
P o= Op Q = OAH/v
Pn‘n = 0,, ~q Q(l_(l = l.,
PI,H QI.()
pl,(i Ql.ll QZ.I
p}_li P‘.I Ql_ll QRI
P-l,lr P4<I Q4,H QJ.I Q4.1
PA.U P . PA.](A 13:2 Qo QA‘I e PA—.[A 2)
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and the remaining matrix entries are evaluated using the following recurrence
relations :

P, =P ,H,—s, P, o, +P; s J=01,0 0 [(k—=1)/2]  (40a)

Qk,/ =Q l./HA—Sk 1Qy 2,/+Qk a1 =01, [/\'/2] (40b)
where
0,., forkeven
Pe = {O,, for k odd
and
Q, for k even
Q. 1= 0,., forkodd
fork=1,2,.... M.

Once the inversion array is developed, the Mth-degree reduced MFD, which
corresponds to the truncated MCFE in (35), can be readily written as

Cu(-"') = P:.u(AT)Qm;(S)
=[Posro+Poy s+ - +Poyyy s "MQr.0
+ Qs+ - +Qupps™] (41)

It is important here to examine the link between the Mth-degree reduced MFD,
G, (s) and the original transfer-function matrix G(s). As a specific example, we
consider G ,(s) which has the following explicit form :

G (s) = H,[H H,+ (s—s )] . (42)

YVith H,Abeing representeq by (34), we have the following explicit expressions for
G,(sy), G(s>) and (d/ds)G (s,)
G (s) = Hy[H,H,] '
G 120G 50[G)10GF20G 240G 4y | for 5, =,
- {G:‘:,(.Gz_,',(,[c,_,_[,Grz,.,c2,3_003‘;,“] ' ofor sy #£s (43
Gi(s2) = Ho[H Hy 4 (s, —s 1] !
= GZ.Z.(I[HIGQ,Z.O_(SZ“AYI)GZ.J.U] ]

= G:.:.ucz,ll‘u = G:‘:,u (43b)
d . P
d‘GI(SI) = —H,[(H H,)"]
K
{‘Gl.:.ncm.n = Gl.z.u(;ﬁzﬁcmﬁ for s, =y, 0
B —G1020Gh5 = [(Gﬁz,ucz.:.u)z] ' for S2 #5). (43c)
198 O et
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Comparing (43) and (21), we have

G.(s)) = G(s)), G.(5:) =G(s,) for s, #s,and p=yg (44a)
. d . d

G (s)) = G(s)), dSGI(xz) = d;qG(S:) for s,=s,and p=gq (44b)
G,(s)) #G(3). G (s:) = G(s) for p#4q. (44¢)

By a similar direct deduction, we can obtain the link between the M th-degree
(M < N) reduced MFD, G, (s). 1n (41) and the original transfer-function matrix
G(s) as follows:

(1) square system (p = ¢)

'

d’ . , . .
A’ Gy, . = ds’ G()|,., for j=0.1..... ai—1 and i=1.2,.... {
(45a)
where /is the number of distinct points that appear in the ordered point system,
and
(5128520 -2 82y) = (010 01,000 Oarvennn Ty ogveees G 1s Gpanens a;)
m" m ;];—V—/;n I V*u‘ i EV\I v

(45b)
which is obtained by truncating the last 2N —2M points of the ordered point
system in (4);

(i) nonsquare system (p # ¢)
d’ . d’
Ay Gy, o = d’ G($)l,=,, for [,>0.j= 0.1,.... a—1and 1 <i<!
(46a)

where 7, the multiplicity of the point a,, appears in the ordered point system,

(S22 8qn v erSoag) = (01, G 0.y Granens Clae s g, (46b)

Notice from (46) that for a nonsquare system, the Mih-degree reduced MFD
obtained by the multipoint Cauer MCFE has the same Padé properties only around
the even expansion points. However. since the multipoint Cauer MCFE involves
the matrix pscudo-inverse in the calculation of odd matrix partial quotients, the
obtained reduced-degree MFDs approximate the Padé properties around the odd
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expansion points, i.e.

J

- d’
dy GM(.Y)IA:,,,de,. G, , for j=0,1,....4—4 and 1 <i</ (47a)

where the expansion point o, appears i, — /7,(> 0) times in the ordered point system,
and
(51,82, ..., Sat 1) = (01,00, Oy O, ..., iy 0)) (47b)

—— R T —————
o fis - i ooy

which is obtained from (43) by dropping the even-indexed elements s, for
Jj=12...., M.

IV. State-space Models Obtained from the Multipoint Cauer MCFE

4.1. State-space formulation of the multipoint Cauer MCFE
Let Y(s) and U(s) be, respectively, the Laplace transforms of the output and
input vectors of the system. Then Y(s) is related to U(s) by

Y(s) = G(n)U(s). (48)
Premultiplying both sides of (48) by G*(s) and using (18), we have
U(s) = G*(5)Y(s)
=[H +(s—s)[Ha+ (s—5,)G:()]*]Y(s)

I #
=H Y&+ l:(y . )(H'_) +r,G;(s))+G;(s)] Y(s) (49)
O3 T |
where
| 1~
G;(s) = ’:Hl+ |:(S _’S")' (Hi+ 1 +rG, 2(5))'*‘(;#:(3):] J
andr, =s,—s,, fori=1.3,5,....2N—1. Let
l #
X, (s) = L S_ (Hz+r.G;(s))+Gx<s)] Y(s). (50)
S5
Then, we have
1
Y(5) = I;_ g (H, +I‘1G_w(-ﬂ‘))+Gz(S)}X1(S) (51a)
DT l
and
Xi(5) =U(s)—H, Y(s5). (51b)

The above two relations allow one to construct the block diagram as shown in Fig,
1 for representing the relationship between Y(s) and U(s).
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Yis)

[

Fic. 1. Block diagram representation of G, (s).

Using a similar procedure to expand G;(s). Gs{s),.... a realization block diag-
ram (Fig. 2) for G(s) can be achieved. It is readily apparent from Fig. 2 that a
canonical state-space representation of G(s) can be written as follows :

2z =Hz+Gu (52a)
y=Fz (52b)
with
z=1[2! 20 ... 23], z.=[ci1 Ziz - Zig
H=-HH+R®I,
[H, H, H, H,y
H, = H, H, 0] CH.= H, ... Hy
SR o .
|H, H, ... Hy, H,,\
(s, 7
S, F3 O
s, §3 rs
R =
S; 83 S5 ... T o3
s, 83 S5 ... Sawv o3 Favoa
G=[1, I, ... L'
F=[H, H, ... Hy]

where the superscript T designates the transpose of a matrix or vector, and ®
denotes the Kronecker product (16).

4.2. Link between MCFE and block companion forms
Let A,y = I, then a controllable block companion form for the realization of

the MFD (2) can be written as follows (17):
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us) 'E . Y(s)
Z -
—a-
— ]
FIG. 2. Realization block diagram of multipoint Cauer matrix CFE.
X = Ax+Bu (53a)
y=0Cx (53b)
where
x=[x] x} ... xi]", xi=[x x, ... x,)"
- o, I, S
0, 0, 1, 0]
A= : : : :
0, o, 0, 1,
L—Awo —AL —AL, . —A ]
B=[O0, O, ... L]
C=[Ap Ay, ... A,y L

Assume that the system is completely controllable with controllability index equal
to Ng. Then there exists a nonsingular block transformation matrix P which links
the block state vectors z and x by

z =Px (54)
and satisfies the following relations:
PA = HP (55a)
PB=G (55b)
C =FP. (55¢)

The desired block similarity transformation matrix P can be derived from the
relation (18a) and (55c¢). Let the block similarity transformation matrix P be of
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the form
P, P, Py
P_ P, P'l2 P,y (56)
Pv: Py> ... Puy

where the block elements P;, are g X ¢ matrices. Define the matrix polynomials
N
P.(s) = Z P,s 'oi=1,2,...,N. (57)
J=1
Then the relation (55¢) is equivalent to
Az(S) = HQPI(S)‘}‘HA‘PQ(S)'{' e +H2NPN(S). (58)
Rewrite the recursion in (18b) as
AG) = 5—s)AL+HA (), i=12,... ,2N. (59)

Then, by applying the above relations recursively for i = 2,4,...,2N and noting
that A,y 2(s) = O,.,, we have

As(s) = HyAL(9) + (s— 520 HyAs(5) + (s = 52) (s — s )H A7 (8) + -+
+(s—52) (s DHayAy 1 (5). (60)
Comparing (58) and (60), we obtain

P.(s) = ﬂ (s—s3) Az 1(8)s i=1,2,...,N. (61)

Using (57) and equating the coeflicients of the like powers of 5" in (61), and using
the relations in (57), we have the explicit form for P;; as

J
P,_j: Zriv/\.Azi+lJ,k+l, i=l,2,...,n andj=l,2....,n (623)
K=t

where A, are the coefficients of the matrix polynomials defined in (18b,¢), and ry,
are given by

0 for i<k or k=20
P =131 for i=k (62b)
Vi ) — 8ok for i > k.

4.3. Reduced-dimensional state-space models

Truncation of the last (2N—2M) matrix partial quotients of the multipoint
Cauer MCFE in (18) after the first 2M matrix partial quotients is equivalent to
discarding the N— M inner block loops of Fig. 2. Hence, the multipoint Cauer
MCFE canonical state-space model corresponding to the Mth-degree G (s) can
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be readily obtained as

z=Hi+Gu (63a)
y=Fz (63b)
where
i=[2 z; ... #,)". k=[5, 2, ... )"
H=-HAHA+R®I,
H, H, H, ... H,,
S
D : 0 :
H, H, ... H,, , Hay
- -
SL 1y (0}
. 5 R rs
R =
S1 83 Ss ... Ty
BH 83 Ss cee Sopmo3 rZM,,J
G=0, 1, ... 1T
F=[MH, H, ... H,)

It is obvious that H is the upper-left M by M block submatrix of H, and G and F
are the upper block subvectors of G and F, respectively. Hence, the truncation
procedure in the time domain can be represented by the following mathematical
relations :

A=JHJ" (64a)
G=JG (64b)
F=FJ* (64c)

where
J =My : Ourge v angl-

Based on the multi-feedback multi-feedforward control theory (2, 10) and the
realization block diagram of Fig. 2, we know that the inner block states have fewer
contributions to the system output. Hence, it is reasonable to consider that for an
appropriate M, the following approximation holds

i~Jz (65)
With this approximation and the relation (64), we conclude that the state vector

of the reduced-dimensional state-space model is approximately related to that of
the original system in (53) by
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7 = Qx (66a)
where
Q=JP. (66b)

The Q is called an approximate aggregation matrix. The availability of this
approximate aggregation matrix enables the reduced-dimensional state-space
models obtained by the multipoint Cauer MCFE method to be useful in designing
reduced-order controllers.

V. An Hlustrative Example

To illustrate the proposed algorithms, we consider a two-input-three-output
system characterized by its third-degree MFD

F —7.6051 —18.4986 —23.5164 —49.8596
G(s) = | | —35.0581 —85.4861 [+| —4.5654 21.8066 |s
| —25.4654 —62.0624 —6.4341 8.5709

C—6.6984  3.8209
+| 18038 —0.8574 |s? [
| 0.2685  0.0243

—64.1796 —148.9154 --16.0738 29.8019
+ —167.1634 —326.1264 i+ —39.1889 40.4941

LY

The transfer-function matrix is given by

—1.2972 —2.5216
—85.9888 —209.6110

2
s

91.1(8)  g1.2(5)
G(s) =] g2.1(9)  g22(9)
g2.1(5)  g32(9)
where
g1 (s) = (3.440200+29.863961s + 34.330077s> —90.583719s"
—145.0252115* — 6.6984s°)/d(s)
ga.(5) = (—2.283757—24.6937593‘—87.412685.«;2 —96.945897s°
+34.8772955" + 1.80385")/d(s)
g (s) = (1.156658 4 16.036971s + 13.523988s% —33.627214s’
+5.3908565* +0.26855”)/d(s)
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91.2(5) = (4.819364+60.0951595+ 200.1571415> +241.049291 5>

+88.3490655* + 3.82095°)/d(s)

92.2(5) = (22.490064 + 225.9730855 + 345.14791352 + 23.697755s°
—18.1683915* —0.8574s°)/d(s)

95.2(5) = (16.293793 + 163.6073825 + 248.92792852 + 30.343293s°
+0.1784975* +0.02435%)/d(s)

d(s) = 55.078031 +649.2255255 + 1817.984559s% + 1578.2433995°

+126.703614s* +24.42035° + 5°.

The controllable block companion form corresponding to this MFD is
le.." i 0 0 1 0
| X2 ] 00 0 1
E [o 0] [0 o]
| %2. )| 0 0 0 0

EX [1.2972 2.5216] [64.1796 148.9154]

1B 85.9888 209.6110 167.1634  326.1264
0 0 1 1Mx.11 [Jo o]
0 0 [ x5 ] [0 0]
[I o] [ x5, ] [0 0] [«
0 1 sl T Lo o] |,
16.0738 —29.8019 B (1 0]
39.1889  —40.4941 || ||x,o | Llo 1]
Vi —7.6051 —18.49867 [ —23.5164 —49.8596
va|=1|—350581 —85.4861 —4.5654  21.8066
I —25.4654 —62.0624 —6.4341 8.5709
{Fx,l——

—6.6984  3.8209 B
18038 —oss74| || [
0.2685  0.0243

LA gl

The Taylor series expansions of G(s) around expansion points at s =0, 1,2 are
evaluated as
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0.062460 0.0875017 [ —0.194033  0.059688
G(s) = | -0.041464 0.408331 |+| 0.040411 —0.710370 |s
0.021000 0.295831 0.043629 —0.516607
0.848784 0.042327
+| —0.694785 1.161968 |57+ -+
—0.961898 0.844367
_0.041074 0.1406867 [ —0.091768  0.046501
—| —0.041070 0.140685 |+| 0.012861 —0.105319 [(s—1)
0.000647 0.108021] | —0.009672 —0.068097
0.005283 —0.005326
+]0.008434  0.058837 |(s— 1)+ -
0.008503  0.042513
_0.126800 0.1819717 [—0.078945  0.036070
— 1 —0.023260 0.071566 |+| 0.020381 —0.046636 |(s—2)
—0.003600 0.065727] | —0.000845 —0.026606
0.007431 —0.005244
+10.000944 0014180 [(s—2)%+ -~
0.002074  0.009571

Choosing the ordered expansion point system as (s, 5y, $2, $2, 53, $3)=1(0,0,1,1,2,2)
and using the recursive algorithms (18) and (33), we construct the expansion arrays
as shown in Tables TV and V for evaluating the multipoint Cauer MCFE from the
MFD and Taylor series expansion of G(s), respectively.

We obtain from (18a) and (34), the same set matrix of partial quotients as
follows :

0.029679 0.095386

710.781239  —5.586419  4.521980 \ )
- , =] —0.019033 0.
H, | 0.550334  1.447022 1.220228 H: 0.019033  0.224562
0.010361 0.196506
—6.7377 3.651197
m-10.576133  —5.571830 —4.021421 ?;‘:'; (j 8;3386
= = 817531 —1.
H; | 4017897 —8.535413 —4.024899 H.
0.235814 —0.184328
: 074
165.364859  70.422714  271.800239 0009688 OO? 317
- =|o. 2 0.011424 .
Hs =1 309.425455 49.768519 129.772792 H, = | 0.005302 0.0

0.022325 0.012122
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TABLE IV

Expansion array for evaluating A

-1.2972
—85.9888

192.946970
—139.764214

—7.6051
[—35.058!
—25.4654

0.446132

6.043425
5.190035

0.005302
0.022325

N

{0.009688

—21.779035
{ 5.304092

—2.5216
—209.6110

—18.4986

-—-85.4861

—62.0624

16.388694
15.705515
0.074317
0.011424
0.012122

]

|

471.696242

~340.700047
—53.153589
12.603329
0.957600

—64.1796 —148.9154
—167.1634 —326.1264
—23.5164 —49.8596

—4.5654 21.8066

—6.434] 8.5709

38.440311 39.602353

—6.728079
1.822833
0.258139

3.725514
- 1.081962
—0.172206

l

[ 65.005884 — 16.291817]

—16.0738 29.8019
—39.1889 40.4941

—6.6984 3.8209
1.8038 —0.8574
0.2685 0.0243

o ]

[

0

]

Amnsu| WU oY) Jo jeuinof

P 30UIG 1A1AIS|
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TABLE Va
Expansion array for evaluating G, i

o ol

0.062460 0.087501 —0.194033 0.059688
—0.041464 0.408331 0.040411 —0.710370
0.021000 0.295831 0.043629 —0.516607
2.120382 —2.275849
—0.004929 1.625451
TABLE Vb

Expansion array for evaluating Gy

I

(1 0]
(0 1

©—0.041074  0.140686
—0.041070  0.140685
| 0.000647 0.108021

1.210471 —1.219319
| 0081244  0.587192
r~0.084749 0.120865
—0.036275 —0.014384
| —0.027860 0.005267
[().308025 —0.108965]

0.545205 —0.167977

[ —0.091768
0.012861
L —0.009672

" —0.105514
| - 0.037548
- —0.000306
0.055560
0.026659

0.0465017
—0.105319
—0.068097.
0.437559 ]
—0.377289 |
—0.0513627
0.002118
—0.003759

Vol. 33IB, No. 2, pp. 189-216, 1994
Printed in Great Britain. All rights reserved

209



Tong-Yi Guo et al.

TABLE Ve

Expansion array for evaluating G, .
33k

—

10
[0 1

]

—0.126800
—0.023260
[ —0.003600

[1.126698
| 0.053916
—0.082691
—0.006962
L -0.012934
[0.161345
| 0.274680
r 0.001500
0.000121
| —0.000350

[ —0.028680
0.023921

—0.929643

0.181971
0.071566
0.065727

0.358048

|

0.087704
—0.013266
0.002500

—0.065929
—0.097505

—~0.000500
—0.000048
0.000074

0.007509
—0.007708

[0 0

(0 0

r—-0.078945  0.036070
0.020381 —0.046636

L —0.000845 —0.026606

[ -0.078950  0.200273

| —0.019465 —0.138975

(0.003973 —0.022161

0.015105  0.000825

1 0.008366 —0.001936

[ —0.080466 0.028638
| —0.147505 0.046821

]

r—0.001119 0.000338
—0.000046 0.000017
L 0.000502 —0.000133

Once the matrix partial quotients H, are evaluated, the canonical block state-
space model corresponding to the multipoint Cauer MCFE can be constructed
according to (52) as follows :

ER ([ —0.473153  —0.662478 [ 81.728620 —44.639017 ]

[ 2., [ —0.001435 —0.617223| [ 0.790269 —0.202302 |

EX [ —0.473153  —0.6624787 [22.544374 —12.856893]

(220 [ L—0.001435 0617223 | |44.324429 —23.946844 |

E [ —0.473153  —0.662478| [21.544374 —12.856893]

L[LZ:2d) LL-0001435 —0.617223| |44.324429 —24.946844 |
—0.175783  —0.792222171 [z, 17 T[[1 o]
—0.040246  —0.072222 [z, ] [0 1]
[0.046004 0.106164 En 1 0] [,
0.055941  —0.224518 EN IR
—5.997421 —16.282529 ENE 1 0]
—5.134094 15930034 | ||z, |] L]lo 1]l

210
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» 0.029679  0.095386 —6.737767 3.651197
y, [ =] | —0.019033 0.224562 1.817531 —1.093386
Y3 0.010361 0.196506 0.235814 —0.184328

0.009688 0.074317 .
0.005302 0.011424 | || [z20 ]
0.022325 0.012122 —Z“]

LLZ32 44

Using (62) with A,; extracted from Table TV, we obtain the block similarity
transformation matrix for relating the block state vectors z and x in (54) as follows :

[ 192.946970 471.696242 65.005884 —16291817] [1 OW
—139.764214  —340.700047 —38.440311 39.602353 1 [0 1

[0 o] [6.043425 16.388694} 1 0]

0 0 5.190035 15.705515 LO 1
0 0} [—1 0 [1 0]

| 00 0 -1 10 1]

Based on the model reduction method proposed in this paper, the second-degree

reduced MFD model, G,(s), derived from the matrix partial quotients, H,,
i=1,2,3,41s formed as

—2.396027 1.321639 —6.708088 3.746583
G,(s) =| | —10.902575 5937033 |+ 1.798498 —0.868824 [s
—7.941521 4.336653 0.246175 0.012178

[ —0837195 0692416 [-22071221 13519371 o], ]!
26785352 14.610068 | 7| —44.322094 24564066 ] [0 1 §

[él,l(s) g‘I,Z(S) él,}(s)i\

gﬁll(s) gz,z(-‘) éz.z(s)

where
G1.(s) = (0.394446 42.0707505 — 1.114170s> —6.7080885°)/d(s)
g12(8) = (0.552578+4.73O7605+9.319107sz+3.746583s3)/c?(s)
G2.1(s) = (—0.261851 —1.660099s — 5.23305552+ 1.7984985%)/d(s)
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G2.2(s) = (2.578663 + 15.8404575+0.7984905> — 0.868824s°)/d(s)

g3.1(s) = (0.132620+ 1.0602325 — 1.35469552+0.2461755%)/d (s)

g3(s) = (1.868212+ 11.4684845+0.739738s2 +0.0121785%)/d(s)
d(s) = 6.315131+49.784100s + 70.8329265 + 2.4928465> + 5°.

Furthermore, the multipoint Cauer MCFE state-space model corresponding to
G(s) can be readily obtained as

2 [ —0.473153  —0.662478 [81.728620 —44.639017
Zia)| | L—0.001435 —0.617223 | | 0.790269 —0.202302
£, [ —0.473153  —0.6624787 [22.544374 —12.856893
21, [ —0.001435 —0.617223 | | 44.324429 —23.946844
[ 2”1_1] [1 0]
F1a 0 1 [ul
22',:, [1 0] 2
| 22, 0 1
Vi 0.029679 0.0953867 [ —6.737767  3.651197 [‘”H]
y2|=||—0.019033 0.224562 1.817531  —1.093386 o2
¥s 0.010361  0.196506 0.235814 —0.184328 [22,,]
22,2

The Taylor series expansions of G ,(s) around s = 0, 1,2 are, respectively, evaluated
as

0062460 0.0875017 [ —0.164492  0.059321
Gy(s) =| —0.041464 0.408331 |+| 0.063997 —0.710663 |«
0021000 0.295831 0.002335 —0.516094
0.419732  0.026594
+| —0.868085 1.148819 |52+ - --
—0.468475 0.867507
—0.041074  0.1406867 [ —0.091599  0.046459
=1-0.041070 0.140685 [+| 0.012294 —0.105179 [(s—1)
0.000647 0.1080211 | —0.007988 —0.068514
0.006230 —0.005601
+/0.008666  0.058842 [(s—1)2+ - --
0.007286  0.042725

212
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—0.126037 0.181728 —0.077841 0.035700
—| —0.023818 0.071745 |+| 0.019754 —0.046413 |(s—2)
—0.002814 0.065532 —0.000689 —0.026610

0.007584 —0.005306
+1 0.000869 0.014214 | (s—2)>+ -+~
0.001655 0.009714

Comparing the above series with those of G(s), we can verify that the partial matrix
Padé properties of G(s) given in (46a) and (47a) match those of G(s).

For comparison of the time responses between reduced-degree models and G(s),
the second-degree reduced MFD obtained by the single-point Cauer second form
of the MCFE (12) is given below:

2446550 1.3756847 [ —6.893735  3.936407
Gy = | | —11.180131 6.225057 [+| 1.825865 —0.899738 |s
—8.136202  4.539832 0213142 0.045311

) —0.711690 0.5848297+ —22.590895 14.079862
—27.452343  15.304513 | —45.510647 25.793547 g

+[1 o},z] ':[g”’r.l(s) g1:s) g‘f,;(s)]
o 1] g1 §1:0) 1.

6% 1(5) = (0.322474+2.0613885— 1.1119765% — 6.89337557)/d*(s)

7% (5) = (0.451753+4.5993235+9.5115525% +3.9364075")/d*(s)

G% () = (—0.214073 — 1.8248235 — 5.03224957 + 1.8258655) /d* (s)

G%,(s) = (2.108154+ 163576195 +0.8430135> —0.8997385")/d*(s)

§% () = (0.108422+ 1.2551395 —0.57634857+0.2131425")/d (5)

G%,(s) = (1.527333+ 11.8408285+0.51518957+0.0453115%)/d*(s)
d*(s) = 5.162856+49.0414885+72.6771365° +3.2026515 + s*.

where

The values of the impulse response energy (18) for transfer function elements and
outputs of the original system and those of the reduced-degree MFD are listed in
Table VI. The values of the integral squared-error of the impulse and the unit-step
time responses for each output of the reduced models are shown in Table VII. The
above values are usually taken as criteria for choosing proper reduced-degree
models. The unit-step time responses for each output of the original system G(s)
and the reduced-degree models G,(s) are plotted in Fig. 3. It is observed that the
time-responses of the reduced model are close to those of the original system.
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TaBLE VI
The values of impulse response energy of the original and reduced-
degree models

G¥(s) Ga(s) G(s)
g1.(5) 9.493938 12.707962 14.771495
g2.(5) 0.748100 1.037583 1.283513
g3.(8) 0.008769 0.022492 0.042638
g1.2(8) 3.219912 4.134660 4.683292
g2.2(5) 0.298879 0.382659 0.448826
g3.2(8) 0.027614 0.032275 0.037869
»:1(s) 2.039829 2.888713 3.421429
ya(s) 0.191937 0.267885 0.331350
yi(s) 0.030720 0.032574 0.038061
TABLE VII

The integral squared-errors of the impulse and unit-step responses between the original and
reduced-degree models

Impulse response Unit-step response
y1(s) Y ¥i(s) »i(s) ya(s) y3(s)
G%s) 0467087  0.045071  0.003970 0.006885  0.000700  0.000136
Go(s)  0.135860  0.014271  0.001245 0.002030  0.000257  0.000098

04

0.3}

0.2}t

0.1 Y1)

Output

original  system
————— reduced - order system

-0

_02 L . L . . . . 3
(o] ! 2 3 4 5 6 7 8

Time (second )

FiG. 3. Unit-step responses of the original and reduced-degree models.
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V1. Conclusions

A matrix continued-fraction methodology has been established for modeling and
model reduction of multivariable systems having an unequal number of inputs and
outputs. The developed methodology is based on the multipoint Cauer matrix
continued-fraction expansion and the matrix pseudo-inverse, and is applicable to
obtain both the frequency-domain reduced-degree MFDs and time-domain re-
duced-dimensional state-space models. The connection of the presented multipoint
Cauer MCFE method involving matrix pseudo-inverse to the multipoint matrix
Padé approximation method is also established. Although the algorithms in the
paper are derived for a right MFD, the extension to a left MFD is straightforward.

The use of a multipoint continued fraction expansion gives good reduced-order
models that provide satisfactory approximation of the original system not only in
the transient response but also in the steady-state response. Although the stability
of the reduced models by the multipoint Cauer MCFE is not completely guaranteed,
the flexibility of choosing expansion points provides the highest probability for
finding stable reduced-order models (19).
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